
The Tao of Acme

The Philosophy of Rob Pike’s Text Editor, Illuminated Through Mailing List
History

By Ben Hancock

March 26, 2022

Abstract

Acme is a text editor originally developed for the Plan 9 operating system in the
1990s by well-known software engineer Rob Pike, and has since been ported to
other Unix-like systems and platforms. It was created to be a “user interface for
programmers,” and although it arguably belongs to a family of “classic” text
editors dating from an even earlier era — Emacs and vi — it is distinguished by
fundamentally different design decisions, user experience, and overall look and
feel.

I started using acme in the middle of 2021, and as I did so, found myself
curious about the thinking that influenced those decisions, as well as the factors
that drove other committed programmers to choose acme for their work. This
led me to subscribe to the 9fans mailing list and begin digging through the
archives, which I found to be a trove of interesting insights, tips, and
perspectives — including from Pike himself, who also kindly responded to a
question of my own about code navigation in acme.

In this post, my goal is to distill this information into some key points that I
think will help any programmer newly approaching acme understand the
thinking behind “the acme way” of doing things, and why the editor might be an
effective tool for their purposes — even when many other newer, feature-rich
editors are available. If that’s too lofty a goal, I hope to at least convey why I
enjoy using acme when I write code.

On Emptiness

Less is More

When one talks about software, it’s common to start by listing out a program’s
features. When it comes to acme, however, it’s perhaps more appropriate to
start by talking about what features it does not include. It is not for nothing
that acme is sometimes described as a “Zen-style” text editor. As another
programmer aptly wrote: “With acme, you sacrifice almost everything.”

This emptiness is considered to be one of the editor’s positive attributes, with
the idea being that most everything that is missing from acme itself belongs to
one of the following categories:

It can be supplied by an external program specifically designed for the
task, following the Unix philosophy

11.10.2025, 16:42 The Tao of Acme

https://chai.guru/pub/plan9/mirrors/tao-of-acme.html 1/6

http://acme.cat-v.org/
http://acme.cat-v.org/
http://9p.io/wiki/plan9/mailing_lists/
https://github.com/evbogdanov/acme
http://jlouisramblings.blogspot.com/2013/04/acme-as-editor_20.html

It actually can be achieved, probably with the use of structural regular
expressions and the command language of acme predecessor sam(1)
It’s just a distraction that you really don’t need

The final category is significant. In a mailing list thread from 2008, Russ Cox,
the person behind the plan9port project, responds to a post asking for acme’s
way of achieving 19 common editor features — such as substituting spaces for
tabs, syntax highlighting, and code folding — with a simple refrain: “Just say
no.”

Cox’s first response in the message underscores acme’s “keep it simple, stupid”
ethos:

> what is the acme way of approaching it?

> 01. Toggle on/off line wrapping

> 02. Toggle on/off EOL character display

Write shorter lines.

This is not to say that acme is not powerful. In fact, Cox, in a video posted in
2012, nicely demonstrates how much acme can do — especially by leveraging
the plumber and Plan 9 virtual file system, topics that I won’t attempt to do
justice to in this post. He sums up by describing acme as an “integrating
development environment,” distinct because it allows the programmer to more
effectively use the tools available on their system rather than trying to
reimplement them out of whole cloth.

Still, simplicity is acme’s hallmark. It’s README is mercifully short (two pages,
printed) and ends by saying: “This is mostly what you need to get started with
acme.”

Bare Text

Eschewing syntax highlighting probably invites guffaws, utter dismay, or
bemusement for many programmers. But I think others have made a
convincing case for ditching the colors. Håkon Robbestad Gylterud — another
acme user — in his article “How I program without syntax highlighting” notes
how syntax highlighting can often hide ugly code, whereas leaving the text bare
allows neatly organized code to really shine. I certainly am guilty of futzing
about too much with different editor color schemes, and if nothing else, taking
it away removes at least that bit of distraction.

In the same 2008 thread mentioned above, another poster writes that acme’s
approach to presenting code helps highlight flaws or messy code more plainly:

For me, that’s a crucial thing. Keeps my code in check purely through
the text of it.

This philosophy is actually what initially attracted me to acme. It was at a time
when life in general was feeling hectic and overwhelming. I was listening to the
audiobook of Greg McKeown’s Essentialism, and was working on a software
project that I felt had become needlessly complex. It seemed that hiding this
complexity was too easy in other tools, and that working in acme pushed me to
make things simple where doing so actually made more sense.

11.10.2025, 16:42 The Tao of Acme

https://chai.guru/pub/plan9/mirrors/tao-of-acme.html 2/6

https://9fans.github.io/plan9port/
https://marc.info/?l=9fans&m=121916884525962&w=2
https://research.swtch.com/acme
https://research.swtch.com/acme
http://acme.cat-v.org/readme
https://hakon.gylterud.net/opinion/syntax-highlighting.html
https://marc.info/?l=9fans&m=121916365714790&w=2
http://www.worldcat.org/oclc/985356418
http://www.worldcat.org/oclc/985356418

Acme’s lack of support for substituting tabs for spaces means that for those who
write a lot of Python (like myself) adhering to the PEP8 convention of using four
spaces to indent means you will probably end up counting how many times you
hit the space bar at one point or another. This irked me at first, though it’s more
trivial when starting acme with the -a flag, which performs a simplistic auto-
indent. But what I found interesting was that before using acme, I had never
really questioned the convention — even though the tabs vs. spaces debate is
by now as old as time. (I then felt genuinely befuddled: If I’m really just trying
to visually indent my code, and hitting Tab to do so, why not use an actual tab
character?)

On that point, I found a 1995 message by Rob Pike (albeit on a different
subject) to be illuminating.

Seriously, if you need more than indentation with tabs to lay out your
program, you’re probably worrying about the wrong things in your
source code.

On Fonts

In that thread , Pike was actually responding to a message about fonts in acme
— and in particular, its choice of using a proportional (or variable-pitch) font as
the default. By now, we’re seeming really oddball, aren’t we? First, no syntax
highlighting; now, ditching monospace fonts!?

Here too, there is reasoning behind this choice, and it boils down to two things:
screen real estate, and readability. I’ll quote liberally from Howard Trickey
(another Bell Labs alum who, like Pike, now works at Google) on that same
1995 thread:

[G]ive the proportional font a chance. You can always flip a given
window between proportional and non-proportional (execute Font with
button 2) if it is critical to see how things line up.

I’ve been using acme exclusively for years now — I was the first non-
rob person to do so. At first, the problems with programming seem to
loom large, but there are two solutions:

() if you are working a program for yourself only: make it look good
with the proportional font, and the hell with how it looks in fixed
pitch!

() if you have to collaborate with others, or produce programs that
look good when printed on paper, develop a programming style that
needs very few uses of “Font” to see how things line up. […]

The additional real-estate advantages of the proportional font are too
great to give up without a fight.

In subsequent messages, Pike goes on to dismiss arguments about monospace
fonts being useful because you can do things like create ASCII diagrams in
comments (see his remark above), and describes monospace fonts as “old
fashioned” and on their way out.

Fixed-pitch will soon follow in the footsteps of CAPITAL LETTERS AND
PUNCHED CARDS.

11.10.2025, 16:42 The Tao of Acme

https://chai.guru/pub/plan9/mirrors/tao-of-acme.html 3/6

https://marc.info/?l=9fans&m=111558697816669&w=2
https://marc.info/?t=111558706700043&r=1&w=2

I’d be interested to know how Pike feels about that prediction now, given that
fixed-pitch fonts are still the default in most editors and IDEs. Maybe we’re still
too early on the timeline. But either way, I can say that after embracing
Trickey’s advice to give proportional fonts a chance, I’ve found I really enjoy
them. And apparently I’m not totally alone. (My font of choice is DejaVu Serif;
it’s widely available and leaves a small amount of space between braces,
parentheses, quote marks, etc., which makes working with code easier).

On Using the Mouse

Another one of acme’s hallmarks is that many operations are achieved using the
mouse, and only the mouse. It has a total of five key bindings, six if you count
using Esc to select the most recently typed text (which you will then probably
click in some fashion), and a few more if you use the plan9port version on a
Mac. But in general, a lot in acme gets done with the mouse. If you are coming
from an editor like Vim or Emacs — I was a strong adherent to the latter for
years — this may seem like utter heresy, a productivity drag at best and a
recipe for RSI at worst.

There are a couple things I’ve learned from giving it a try anyway: First, using
the mouse, and especially with acme’s unique mouse “chords,” can actually be
pretty fast. But more importantly, I’ve come to feel that obsessing over the
speed of issuing editor commands is misguided. To be sure, appearing fast and
fluid while programming is something that programmers take seriously. I once
attended an Emacs meetup (Yes, you read that right) where a developer who
spent a lot of time writing C++ expressed consternation about sometimes not
appearing as quick on the draw as his colleagues who used an IDE. “The one
thing you don’t want to look is slow,” he said.

I get this. But I also know that there have been too many times when I’ve
started hacking away at something without really understanding what I was
trying to achieve. With acme (as well as with its predecessor sam) I find that I
am more deliberate, more clear-headed. This experience appears to be shared
by at least some others. One user wrote on a 2009 thread to the list:

I spend relatively little of my time actually typing or moving the
cursor, etc. The majority of my time is spent thinking, so I’m much
more interested in what distracts me less and what causes the least
irritation. And I do find moving my hand back and forth between the
keyboard and mouse to be a bit irritating. I will say, however, that I
find acme to be the least irritating of the pointer-based applications
I’ve used.

In a blog post from 2013 about acme, mathemetician and data engineer Ruben
Berenguel also writes about this idea.

[T]he point is not […] speed. What are you changing this string for?
Did you wait to think about it or you just changed it, compiled it,
checked it and went back to square one?

On Navigating Code

Programmers spend a lot of time reading code, and often code that they did not
write. This means that finding one’s way around a code base, identifying what

11.10.2025, 16:42 The Tao of Acme

https://chai.guru/pub/plan9/mirrors/tao-of-acme.html 4/6

https://news.ycombinator.com/item?id=1056908
https://en.wikipedia.org/wiki/Repetitive_strain_injury
http://sam.cat-v.org/
https://marc.info/?l=9fans&m=124653651608298&w=2
https://mostlymaths.net/2013/03/extensibility-programming-acme-text-editor.html

different pieces do and understanding the logical flow, is an important part of
the craft. Jumping to a function or symbol’s definition is a standard IDE feature,
and is something that editors like Emacs and Vim accomplish natively
(i.e. without external packages) by parsing so-called “tags” files, which are files
generated with a special tool that analyzes source code.

Acme offers an easy way to jump around to matching strings within a file:
simply right-click a bit of text and you will jump to the next match. But this only
gets you so far, and as I began using the editor more, I scratched my head at
how to accomplish this essential task of navigating complex source code in
acme. So I sent a message to the mailing list asking for some guidance.

At this point I should say some kind words about the acme and Plan 9
community, because I received a lot of friendly and helpful feedback (and fast!).
The responses ranged from philosophical (Don’t let your code get so complex
that it’s hard to navigate) to more pragmatic. One of the people who replied
was Rob Pike himself, who shared a sampling of one-line scripts he calls from
acme to find definitions. Some of them were tools that I hadn’t heard of, like
Ross Cox’s codesearch, but most of them pointed toward a dead-simple answer:
use grep.

Here’s an example of Pike’s f script.

#!/bin/sh

9 grep -i -n '^func (\([^)]+\))?'$1'\(' *.go /dev/null

It may look cryptic, but this just looks for a function definition in any go source
file with the name given as the argument.

Acme makes calling a program like this pretty slick: if I’m looking for a function
called foo(), I can double-click foo to highlight it, type my program name —
here, just f— in the top blue portion of my window (called the “tag” in acme,
not to be confused with the types of tags files described above), and then click f
with a mouse chord: middle button followed by left-click. This executes f with
foo as the argument, and the output pops up in a new window, with the
filename and line number where foo() is defined. Right-click that, and then
acme takes you there.

I realize as I write this that it may sound like a lot of steps, or that it’s clunky,
but it really becomes quite fluid. Part of the paradigm of using acme, too, is that
you keep useful text around. So you might keep f in your window tag for your
whole session, along with commands to invoke other external programs, like
|fmt or |tr A-Z a-z.

Being able to leverage a simple script like this to navigate code is especially
useful if you do any work in an uncommon language. For example: I write and
need to navigate a fair amount of code written in XQuery, a functional language
used by some XML databases. It also has an uncommon syntax for definining
functions that is quite verbose and in which functions are generally prefixed by
namespaces (e.g. declare function foo:barThisFoo($x as xs:string) { ... }). But
acme allows me to use a one-liner to traverse definitions across XQuery
modules easily.

Is this on par with automatic code-completion, or “Intellisense”-style in-line
documentation of functions? Probably not (though there is acme-lsp). But it is

11.10.2025, 16:42 The Tao of Acme

https://chai.guru/pub/plan9/mirrors/tao-of-acme.html 5/6

https://marc.info/?t=162923195200001&r=1&w=2
https://marc.info/?l=9fans&m=162927881111507&w=2
https://github.com/google/codesearch
https://github.com/fhs/acme-lsp

simple, and makes clear that there’s not much magic about finding your way
around code.

But Still, Why?

If you’ve made it to the end of this post (thank you!), then you may still be
wondering: Why? In an era when there are so many editors and IDEs, why
choose to do things in this quirky, acme way?

To be honest, after reading Brian Zwahr’s blog series about using acme, at the
end of which he — spoiler alert! — returns to using Emacs, I fully expected that
I would end up doing the same thing. After several months, there were days
when I would go back to Emacs and get a sense that things were so much
easier and more fluid. The buffer juggling. The keyboard bindings. The
packages. The colors!

I usually did this when I hit some roadblock in my programming, thinking that it
was the editor standing in the way. But invariably, this was not the case: the
mental block was a realization that there was a problem in my code, a flaw in
the design. Acme, I found, helped to me to focus on that.

And so I’ve come back to acme, day after day; I’ve worked on projects large
and small with it, used it to take notes, and — hey — even written blog posts.
Do I still use Emacs? Sure, sometimes. I also sometimes use Vim, mg, sam, or
even VS Code. I subscribe to the philosophy that different editors have different
strengths. But for a lot of what I do, acme is a fantastic tool.

Conclusion

I’ve barely scratched the surface of what it’s like using acme, but hopefully this
has helped the curious programmer get acquainted with some of the thinking
behind the editor’s most obvious design differences. I hope in the future to
share more notes and tips about how I use it for day-to-day work, but in the
meantime, give it a try!

11.10.2025, 16:42 The Tao of Acme

https://chai.guru/pub/plan9/mirrors/tao-of-acme.html 6/6

https://echosa.net/blog/2014/10/06/lets-try-acme-episode-9-the-end/
https://utcc.utoronto.ca/~cks/space/blog/tech/EditorDifferences
https://utcc.utoronto.ca/~cks/space/blog/tech/EditorDifferences

